본문 바로가기
흔한 학교 생활/자동제어|제어공학

[자동제어|제어공학] Root Locus 개념, 그리기 (1)

by 흔한 학생 2024. 5. 2.
반응형

 

 

 

 Root Locus 개념

Root Locus 방법은 시각적인 정보를 쉽게 얻을 수 있는 방법입니다.

서론

open loop 시스템에서 전달함수는 $KG(s)$ 입니다.

closed loop 시스템에서 전달함수는 $\frac{KG(s)}{1+KG(s)}$ 형태로 나타납니다.

이때 특성방정식이 0 인 식에서의 근이 시스템의 poles 가 됩니다. 

Root Locus 는 K의 변화에 따른 모든 poles를 그래프에서 시각적으로 나타낸 것입니다.

 

식으로 나타내면 $1+KG(s) = 0$, 즉 $KG(s)=-1$ 입니다.

s 도메인은 복소수 영역이므로 극좌표 형식으로 나타낼 수 있습니다.

때문에 크기만 본다면 $|KG(s)|=1$ 이고
angle은 $\angle KG(s)=\angle 180^{\circ}$ 입니다.

특성방정식이 이차식일 때 Root Locus

특성방정식이 $s^{2}+2\zeta \omega_{n}s+\omega_{n}^{2}$ 일때 

$s^{2}+2\zeta \omega_{n}s+\omega_{n}^{2}=0$ 의 근은 $\zeta \omega_{n} +- \omega_{n}\sqrt{\zeta^{2}-1}$ 입니다.


 7 steps of root locus method

특성방정식의 근을 s-plane 에 시각적으로 표현하려면 7가지 스텝을 거쳐야 합니다.

간단한 2계 시스템을 예로 설명하겠습니다.

다음과 같은 특성방정식을 가지는 싱글루프 피드백 컨트롤 시스템입니다.

$1+G_{c}(s) G(s)=1+K\frac{2(s+2)}{s^{2}+4s}$

 

step 1

 find poles and zeros

특성방정식은 1+F(s)=0 형태로 나올 것입니다. 

multiplying factor 인 K 로 나타내면 1+KP(s) = 0 으로 나타낼 수도 있습니다.

위 식에서 $P(s)=\frac{2(s+2)}{s^{2}+4s}$ 입니다. 

K가 0부터 $\infty$ 까지 변할때 근의 궤적을 구해야합니다. 

방정식을 poles , zeros 가 직관적으로 보이도록 바꾸면

$1+ K \frac{(s+z_{1})(s+z_{2})(s+z_{3}) \cdots (s+z_{M})}{(s+p_{1})(s+p_{2})(s+p_{3})\cdots (s+p_{n})} = 0$

로 나타납니다. (zero 는 M 개, pole은 n개)

 

그래프에 모든 poles , zeros 를 "x" 와 "o" 로 나타냅니다.

위 식에서 pole은 0과 -4, zero는 -2입니다.

 

식을 정리하면 $\prod_{j=1}^{n}(s+p_{j})+K\prod_{i=1}^{M}(s+z_{i})=0$ 입니다.

K가 0부터 무한대까지 증가할 때의 궤적을 그리는 것이므로
$K=0$ 이라면 zero에 대한 식은 전부 없어지므로 특성방정식의 근은 P(s)의 Poles 입니다.

 $K->\infty$ 로 증가하면 근은 P(s) 의 zeros 입니다.

증명
위 식을 K로 나누고 K를 무한대로 보내면 pole 에 관한 식이 없어지게 됩니다.

 즉 정리해보면 특성방정식 1+KP(s)=0 의 근 궤적은
K가 0에서 $\infty$ 로 증가함에 따라
P(s)의 Pole에서 시작해 P(s)의 zero 로 끝난다는 것을 알 수 있습니다.

branch 찾기

보통 P(s)의 zeros 는 s-plane 에서 무한대로 갑니다. 
(대부분의 함수가 zero 보다 pole 을 더 많이 가지고 있기 때문)

예를 들어 n=3 poles 와 M=1 zero 인 경우에 n-M=2 이므로
root locus에서 2개의 branches 를 가집니다.
- 2 zeros at infinity

 

 step 2

근 궤적 위치 정하기

실수 축의 근 궤적(root locus)은 홀수 개의 poles 와 zeros 의 왼쪽에 놓여야 합니다.

즉 근 궤적의 오른쪽에는 x 혹은 o 가 홀수 개 있어야 합니다.

예를 들어 $P(s)=\frac{2(s+2)}{s(s+4)}$ 이라면

pole 인 0에서의 각은 $180^{\circ}$ 이고

zero인 -2와 pole인 -4에서의 각은 $0^{\circ} $입니다.???????

pole 에서 궤적이 시작되고, zero에서 끝나기 때문에 다음과 같은 결과가 나옵니다.

 

이 시스템은 2개의 poles 와 하나의 zero가 있기에 1 zero at infinity 를 가집니다.

근을 알 때 gain K 구하기

위의 예시에서 $s_{1}=-1$이라는 조건이 주어졌을 때
magnitude를 이용해 K 를 구할 수 있습니다.

$F(s)=K \frac{2(s+2)}{s(s+4)}$ 이고 극좌표 형식에서 크기를 구하는 방법을 떠올려 봅시다.
$|F(s)|=\frac{2K|s+2|}{|s| |s+4|}=1$ 입니다.
s에 -1 을 대입해주면 K=1.5 임을 알 수 있습니다.

크기magnitude 는 시각적으로도 확인할 수 있습니다.

gain K가 1.5 일 때 $s_{1}=-1$이었고 나머지 근 $s_{2}$ 는 -4 pole 왼쪽에 있습니다.

두 번째 근의 위치는 다음 그림과 같이 -6임을 알 수 있습니다.

 

separate loci 의 개수

loci는 pole 에서 시작하고 zero 에서 끝나기 때문에 separate loci의 수는 pole 의 수와 같습니다. (zero의 수보다 pole 의 수가 크거나 같을 때)

root loci 는 실수축에 대칭이어야 합니다.
복소수 근은 complex conjugate roots (켤레 복소수 근)쌍으로 나타나야 하기 때문입니다.

 step 3

점근선 정하기

loci는 $\sigma _{A}$와 각도 $\phi_{A}$를 중심으로 한 점근선을 따라 zeros at infinity 로 진행합니다.
P(s)의 유한한 zeros 의 개수, M이 poles 의 개수 n보다 적을 때
N = n - M 에서 N 개의 loci 섹션은 zeros at infinity 로 끝나야 합니다.
K가 무한대로 감에 따라  loci 섹션은 점근선을 따라 zeros at infinity로 진행됩니다.

점근선의 중심은 실수 축 위에 있는 한 점 $\sigma_{A}$ 입니다.
이때 $\sigma_{A}$ 는 (P(s)의 pole 들의 합-P(s)의 zero 들의 합)/(n-M) 입니다.

$\sigma_{A}=\frac{\sum ^{n}_{j=1}(-p_{j})-\sum^{M}_{i=1}(-z_{i})}{n-M}$

점근선의 실수축과의 각은 $\phi_{A}$ 이며 
$\phi_{A}=\frac{2k+1}{n-M}180^{\circ}$ 입니다.
($k=0,1,\cdots,n-M-1$)

$P(s)=\frac{1}{s(s+2)}$ 인 시스템을 예로 들면 n-M=2 이고
$\sigma_{A}=\frac{0-2-0}{2} =-1$
$\phi_{A}=90^{\circ},270^{\circ}$ 
점근선의 중심은 -1 이고 점근선의 각은 90도 270도 입니다.

 

다음 글에서 계속됩니다!

 

[자동제어|제어공학] Root Locus 개념, 그리기 (2)

[자동제어|제어공학] Root Locus 개념, 그리기 (1)Root Locus 개념Root Locus 방법은 시각적인 정보를 쉽게 얻을 수 있는 방법입니다.서론open loop 시스템에서 전달함수는 $KG(s)$ 입니다.closed loop 시스템에서

studentstory.tistory.com

 

반응형